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The parameters of helix-chain model

For the phonon system, we consider a simple harmonic oscillator model described by the

Hamiltonian

H =
1

2
pTp+

1

2
uTKu, (1)

where u is a column vector of displacements from the equilibrium positions, multiplied by

the square root of mass (the mass is taken to be the same for every site here); p is the

conjugate momentum vector, and K is the force constant matrix.

Along x direction, we set the force constant matrix as kx =


kL 0 0

0 kT1 0

0 0 kT2

. Here,

kL is the longitudinal force constant, kT1 and kT2 are the transverse force constants. Along

y-axis, we define a rotation operator as T (ϕ) =


cosϕ 0 sinϕ

0 1 0

−sinϕ 0 cosϕ

, the force constant

matrix kx2 = T (ϕ)kxT (−ϕ) has an angle ϕ with the x− y plane.

Along the z-axis, we define a rotation operator as U(θ) =


cosθ −sinθ 0

−sinθ cosθ 0

0 0 1

. For

the right-handed helix model, the force constant matrixes between atoms 2 and 3, atoms 1

and 2, atoms 1 and 3 are

k1 = U(π)kx2U(−π),

k2 = U(π/3)kx2U(−π/3),

k3 = U(−π/3)kx2U(π/3), (2)

2



respectively.

Consider the nearest neighbor interaction, we can write the force constant matrix as

K =


k2+k3
m1

−k2√
m1m2

−k3√
m1m3

−k2√
m1m2

k1+k2
m2

−k1√
m2m3

−k3√
m1m3

−k1√
m2m3

k1+k3
m3

. Considering the phase factor λ between the unit cell and

its two nearest neighbors λ1 = e−ikzc, λ2 = eikzc where c is the z-direction helix period. Thus

the 9× 9 dynamic matrix can be expressed as

D(k) =


k2+k3
m1

−k2√
m1m2

−k3√
m1m3

λ1

−k2√
m1m2

k1+k2
m2

−k1√
m2m3

−k3√
m1m3

λ2
−k1√
m2m3

k1+k3
m3

 . (3)

For the chiral chain model, the phonon mode eigenvector ε is solved from the eigenvalue

problem

D(k)ε(k, σ) = ω2
k,σε(k, σ) (4)

and σ is the phonon branch label. In this model, we set ϕ = π/3, kL = 1.0, kT1 = 0.05, kT2 =

0.25 and m1 = m2 = m3 = 1.0.

First-principles calculations details of α-quartz (SiO2)

We performed the first-principles calculations to study the phononic properties of the α-

quartz material. The calculations were done using the Vienna ab initio simulation package

(VASP).1,2 The projector augmented wave method3 was adopted and the kinetic energy

cutoff was set to be 500 eV. The generalized gradient approximation (GGA) with the Perdew-

Burke-Ernzerhof (PBE)4 realization was adopted for the exchange-correlation potential. The

structure is fully optimized with the energy and force convergence criteria of 10−6 eV and

10−2 eV/Å, respectively and the Brillouin zone was sampled with k-mesh of size 9 × 9 × 9.

The phonon spectrum was obtained by using the PHONOPY code,5 based on the force
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constants calculated by the VASP-DFPT method. The 2× 2× 2 supercell was used with a

3× 3× 3 k-mesh. The method of non-analytical term correction (NAC)6 was applied to get

the dynamical matrix. And the lattice parameters of α-quartz are a = b = 4.95Å, c = 5.45Å.

Opposite total angular momentum effect

In equilibrium, the total phonon angular momentum of the system can be expressed as7

J n̂ph =
1

V

∑
k,σ

~sn̂σ(k)[f0(ωσ(k)) +
1

2
], n̂ = x, y, z (5)

sn̂σ(k) = ε†σ(k)Ŝn̂εσ(k), (6)

where f0(ωσ(k)) = 1/(e~ωσ(k)/kBT − 1) is the Bose-Einstein distribution. ~sn̂σ(k) represents

the n̂-direction phonon angular momentum of branch σ at point k. V is the volume of

the sample and T is the temperature, ωσ(k) is the frequency corresponding to each phonon

mode.

The number of left-handed phonons and right-handed phonons in the system are the

same, which results in the total phonon angular momentum of the system being zero. After

applying a temperature gradient, the phonon angular momentum of the system can be non-

zero. By the Boltzmann transport theory, the form of the distribution function is

fσ,k = f0(ωσ(k))− τvσ,n̂(k)
∂f0
∂T

∂T

∂xn̂
. (7)

τ is the phonon relaxation time, vσ,n̂ is the phonon group velocity and xn̂ is the n̂-component

of the position. By substituting Eq. 7 into Eq. 5, we can obtain the total phonon angular

momentum per unit volume under the temperature gradient as8
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J n̂ph = − τ
V

∑
k,σ

~sn̂σ(k)vσ,m̂(k)
∂f0(ωσ(k))

∂T

∂T

∂xm̂
= αn̂m̂

∂T

∂xm̂
(8)

where αn̂m̂ denotes a response tensor. When the same z-direction temperature gradient is

applied to the right-handed and left-handed lattices, they will produce opposite net phonon

angular momentum due to the opposite distribution of chiral phonons. Because of the

conservation of angular momentum, the rigid-body rotation angular momentum of the crystal

needs to cancel out the net phonon angular momentum. If the system can rotate freely, the

lattices with opposite chirality rotate in the opposite direction.

For the right-handed α-quartz material, the response tensor is α =


αxx 0 0

0 αyy 0

0 0 αzz

.

At T = 300K, the phonon angular momentum response tensor element αxx = αyy = −6.5×

10−6× [τ/(1s)] J s m−2K−1 and αzz = 4.1× 10−6× [τ/(1s)] J s m−2K−1 with relaxation time

τ . For the left-handed α-quartz, it has the P3221 space group (154) and the response tensor

element is opposite to the right-handed one.

Next, we estimate the angular velocity of rigid body rotation. Take a cylinder with

radius r and height h, assuming that the phonon relaxation time is 10 ps. The z-direction

temperature difference between the top and the bottom surfaces of the sample is represented

by ∆T . The angular momentum of the rigid body rotation is expressed as Jrotationπr
2h = Iω,

where I = 1
2
Mr2 is the momentum of inertia and M is the total mass of the sample. The

angular velocity of the rigid-body rotation as

ω =
−Jzphπr

2h

I
=
−Jzph
1
2
ρr2
∼ ∆T/(1K)

hr2/(1m)3
× 10−20 s−1. (9)

Assuming ∆T = 10 K, when h = 100 µm and r = 10 µm, the angular velocity ω of rigid body

rotation is estimated as ω ∼ 10−5 s−1. Crystals with opposite chirality rotate in opposite

directions under the same temperature gradient.
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Figure 1: Electronic band structure of α-quartz.

Electronic band structure of α-quartz

Fig. 1 shows the electronic band structure of α-quartz, one can clear see that it is an insu-

lator with a band gap of more than 5.8 eV. When irradiating circularly polarized light that

responds to the energy of phonons, it can’t stimulate the transition of electrons.

PAM of the chiral Te lattice
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Figure 2: Phonon spectrum of the right-handed Te. +/− on the path indicate the kz > 0 /
kz < 0 part. We marked the phonon chirality. Red/blue color represents right/left-handed
phonons. The phonon PAMs at the Q and P points are shown in the tables.
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Table 1: Properties of the phonon modes at the Q point of the right-handed Te lattice. n
labels the nine branches. Eph is the phonon energy. ± denotes the mode has right-/left-
handed chirality. `ph is the phonon PAM.

n Eph (cm-1) chirality `ph

1 23.1 + 1
2 26.5 − -1
3 35.9 + 0
4 67.3 − 1
5 76.8 + 0
6 86.8 + -1
7 110.7 − 0
8 116.0 − 1
9 122.3 + -1

Table 2: Properties of the phonon modes at the P point of the right-handed Te lattice. n
labels the nine branches. Eph is the phonon energy. ± denotes the mode has right-/left-
handed chirality. `ph is the phonon PAM.

n Eph (cm-1) chirality `ph

1 34.6 − -1
2 42.9 + 1
3 50.6 + 0
4 64.7 + 0
5 74.8 − 1
6 82.5 + -1
7 98.6 − 1
8 108.5 + -1
9 127.0 − 0

Fig. 2 shows the phonon spectrum of the right-handed Te lattice. The calculated phonon

chirality and PAM of the right-handed Te lattice are shown in the Table 1 and Table 2.

The calculations of phonon spectrum are done using the Quantum Espresso package.9

The local density approximation (LDA) is adopted for the exchange-correlation functional.

The kinetic energy cutoff is set to be 60 Ry. The dynamical matrices are obtained with a

4× 4× 4 k-mesh, within the framework of density functional perturbation theory (DFPT).

And the lattice parameters of two chiral Te lattices are a = 4.51Å, c = 5.96Å.
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